PMM U.S.8.R., Vol. 46, No. 6, pp. 786~793, 1983, 0021-8928/83 $7.50+0.00
Printed in Great Britain. € 1983 Pergamon Press Ltd.
U 533.6.011

ON BEHAVIOR OF THE SMALL PERTURBATIONS

OF ONE-DIMENSIONAL STEADY TRANSONIC FLOWS™

A.G. KULIKOVSKII and F.A. SLOBODKINA

Behavior of unsteady perturbations of steady sclutions ¢f guasilinear hyperbolicor
parabolic degenerate systems of differential eguations in partial derivatives is

oonsidered in the critical rmnint neighborhosd, The sought functicns of analyzed
ritical pilnilt Neirgaloraene “ae sougatn CLLoNns OF ana.yzed

aquations are assumed dependent on two arguments, viz. coprdinate z and time t,
with an arbitrary number of sought functlonﬁ The p01nt at which one of the system

sharactarigtd wral
characteristic vel

Praviously, the development of unsteady perturbatioms in the critical point neighborhood
was studied /1/ on the assumption that the coefficients and the right-hand sides of eguations
are continuous functions of their arguments. As shown in /1/, the coritical points are on
such assumptions singular points of a system of ordinary differential equations obtained from
the input system for steady solutions, and the behavior of unsteady perturbations in the
critical point neighborhood are defined by nonlinear differential equations in partial deri-
vatives of the first order.

Below, the constraints imposed on the right-hand sides of input eguations are substanti-
ally weakened in that first order discontinuities are admitted in the right-hand sides. Steady
and unsteady soclutions are considered in the neighborhood of discontinuity points at which
simultaneously one of the characteristic velocities changes its sign. At such critical points
the derivatives of steady solutions become infinite., A nonlinear differential equation of
first order is obtained for the definition of unsteady perturbations whose propagation vel-
ocity vanishes in the neighborhood of such critical points. This eguation is a generaliza-
tion of respective equation in /1/ obtained for the case of cantinucas right-hand sides and
differs from it by the presence of a supplamentary piecewise constant term. The perturbation
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obtained for the principal part of such perturbations in the critical point proximity.
The obtained results can be used in the analysis of stability of steady solutions of
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characteristic velocities vanishes. In prablems of gasdynamics and physics of gasdynamics
the vanishing of a characteristic velocity means that the flow velocity has reached the speed

mE v R
ST STRURA.

1. ZLet us consider the hyperbolic system of equations for » functions uy{zr, !} dependent
on two independent variables, viz. the three-dimensional coordinate # and time ¢

. [:] . PR
1 e ) [ - s 2) G | =y k=2 (1.1)

System {1.1} is written in charactexistic fom, 2 {4y, 2} are the characteristic velocit—
ies of the system, and the recurrent subscripts indicate swmmation from 1 to n.

Owing to the systen hyperbolicity matrix {Q% is nondegenerate. Its elements and the
characteristic velocities of system {1.1) are assumed to be continucug and differentiasbie
functions of uy and # with respect to all arguments. Functions fi (uy, #) in the right-hand
sides of Eqgs.(l.l) are considered to be piecewise-continuous, and may have first order dis-~
continuities on some planes z = const or some surfaces & (4, ) =0 in the space u, x. First
order partial derivatives of f' (u;, 2} will be considered as existing and continuous every-
where where f {1, 2z} are determinate, exvept at points belonging to discontinuity surfaces of
these functions.

Let in the considered region of variation of variasbles i, ¥ one of the single character-
istic velocities of the system of Egs.(l.l), for example c¢l{y,, »), vanish, while the remain-
ing characteristic velocities c# (uy, z) (p = 2, . .., n) are nonzero. We select some steady (time
independent) solution I; {x) (f = 1,2, ..., n) of system (1.1}, which intersects surface ¢* (Uy, z) =0
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at some point z* and is continuous in its small neighborhood. We call the point of inter-
section of U;(x)(j =1,2,...,n) with surface ¢'(Uy,7) =0 critical, and take it as the three-
dimensional coordinate origin, Since we have the freedom of choice of sought functions, we
can assume, without loss of generality, that U;{0) =0 for all § from 1 toc =n. Then by
virtue of the selected origin of coordinate £ and of values of quantities U;,wehave ¢!{0,
0, ..., 0)=0at the critical point.

In the vase of steady solutions system (l.1) becomes the system of ordinary differential
equations

; au
1 Uy 0 (Upy 1)L =i (U, 2) (1.2)

Since by assumption ¢! is the single characteristic velocity, hence when ! =0 the first
row of the matrix of coefficients vanishes for d4U,/dx and, consequently, the rank of that
matrix at points of surface ¢!'=0 is equal n — 1. At the remaining points of that region
this rank is equal n.

If function f' is nonzero and continuous at points of surface ¢! = (), the derivatives

aU,ldz(j = 4,2, .. -, B} become infinite at these points and change their sign when passing
through that surface. This means that a solution which is continuous and single-valued for
z exists only in a one-sided neighborhood of the critical point, and that such points can
only be considered as one of the boundaries of the interval in which the solution is studied.

If the critical point lies within the interval, then the existence of a solution which
is continuous and single~valued for g, function f' (Uy &) must change its sign at the critical
point either continuously or discontinuously.

In the first case, points of space U, z, at which conditions

U2y =0, f{lUi, 2} =0 (1.3

are simultanecusly satisfied, are singular points of steady equations (1.2). The steady and
unsteady solutions under conditions (1.3) were investigated in /1/.

In the second case, when function f! is discontinuous at points of surface ¢} == 0, a
continuous solution in the two-sided neighborhood of the critical point is possible under
conditions that

e =0, fls g2 {1.4)

The subscripts minus and plus denote here and subsequently quantities immediately to the
left and right of the critical point, respectively.

OUndex conditions (l.4) the derivatives dU;/dr becomes infinite at the critical point
z =0,

The set of points defined by the equalities {1.3) and the intergection of surface e¢l==0
with the surface where f! has a discontinuity constitute {# — 1)-dimensional surfaces in the
{r + 1)~ dimensional space of variables [/y, .

Note that the requirement for the existence of a continuous steady solution in the crit—
ical peint neighborhood does not impose any additional conditions on functions fA {u =2, ..., nk
Hence they are considered below, for simplicity, as continuous and differentiable throughout
the considered region, including the points where ¢! = 0.

2, lLet us assume that the steady solution U, (z) is weakly perturbed, i.e. the sclution
u;{z, £} of BEgs.(1.1) is the sum of solutions U, {(z) + u;* (z, t}, where u*{(z,t) is a small wn-
steady perturbations. Consider the behavior of solution wuy{z f} of the system of Egs. (1.1} in
Bh?' smsizl,‘}é neighb)orhco& {of dimension8) of the cirtical point z =0 at which ¢' =0 and U;=

j=1,2, ..., n).
We consgider in this point the case of the discontinuous function f' that satisfies con-
ditions (l.4).
We denote by I;' the limit values of [} for z==0,uy =0, and introduce the new vari-
ables
w (2, §) = L 1y, u; = rpwe {2.1)
e == {Zfﬂk)ml (iy is k= i, 2: + s ory ﬂ}

Since the solution of Egs. (1.1) is considered in the small neighborhood of the critical
point, the quantities u;(r,?) and, consequently, also w, (z,t) are small. Suppose the gquant-
ity wy=w is of oxder V"S, while the quantities wy (@, £), wye (), (0= 2,. . ., n), where wy, ()=
w, {0, #), are of order 8. The characteristic time scale quantity is assumed to be of order

5. These nentrivial and important assumptions will be confirmed subsequently in the case
of solutions concentrated close to the critical peoint under conditions {1.4).

We expand the coefficients and right~hand sides of Bgs.(l1.1) in series in wy and z,

retaining in them the principal tems ’
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(Lo + In'w) [ L (celwy + caz + cu‘w’)—] =fo' + hlw (2.2)

e B e (2.3)
(i,j’k=1,2, v, p,=2,...,n)

a8}
lj()‘ == lj{ (O, 0), ljli =a—$ (0, 0), Cot =k (0, O)
cki_ act (0 o, clll=ﬁ;%‘:_(0, 0), c = acl (O 0)
foi =1t (0, 0, ft=-2L-(0,0)

where the notation (0,0) shows that the respective quantity is calculated at the critical

point, where g =0, U;=0.
Since fo! and f,' have different values at the right and left of the critical point, we
shall consider Eq.(2.2) separately at the right and left of point z=0.
Everywhere below, Latin indices run from 1 to 72, and the Greek ones from 2 to n.
Expressing 0u;/0t and 0Qu;/dz , respectively, in terms of Jw,/dt and dw,/0x using formulas

(2.1), we obtain instead of (2.3)
u dw w
+Co"——fo“—co lelu"ilw 2 (2.4)
jel
Retaining in Egs.(2.4) only terms of order unity we can obtain a quasi-steady solution
of these equations, neglecting time derivatives which are of order §. Integrating (2.4) we
obtain

w, = auz + buw? + wuon(t) (2.5)
au:%{ v u=— —;_; Lntra
We use solutions (2.5) for transforming Egs.(2.2). Retaining in (2.2) terms of order
unity and J§ we obtain
20t letw 4 szt rut 4+ (O] 2 —ft + qw (2.6)

n n
s=cl+ culay, r=en'+ > cutby
n=2 p=2
n n
e t)= Zz clwye (), X=Hh'—fo! 21 Ip'rp
B i=
To reduce Eq. (2.6) to a simpler form we introduce the new variable
¢ = c;\w + sz + rw? (2.7

Multiplying Eq.(2.6) by ¢!+ 2rw we obtain

—— =y +ac +sq(t) (2.8)

vy=fo'aly, a=fi'+s+f' ( Elillrjl)

Jjual

It is assumed here that Eq.(2.8) holds for the left and right from the point z=0.

Note that in many cases functions wye (f) and, consequently, also ¢ (f) can be taken as
equal zero, since these quantities are determined by the perturbations arriving in the criti-
cal point neighborhood and connected to the characteristic velocities ¢* %= (. In any case, if
@ (t) and do/dt are small, which is true for a wide number of problems, then by denoted ¢ + ¢ (f)
by ¢ and neglecting in the right-hand side of Eq.(2.8) the terms containing ¢ (f) and do/dt,
we obtain

ac dc

5 e =v+o (2.9)

Equation (2.9) defines both, the unsteady and steady solutions in the neighborhood of
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the critical point z=0.
Let us, first, consider the steady solutions of that equation. Integrating (2.9) when
dc/dt = 0 we obtain
z=—21{’-c'——2%;c‘+consb (2.10)
This shows that, if the solution is to pass through the critical point 2=0,¢=0, it
is necessary that the constant in formula (2.10) be zero and that the inequalities

‘Y_<0,Y+>0 (2.11)

be satisfied.

The subscripts minus and plus denote quantities to the left and right of the critical
point, respectively. Condition (2.11) is a refinement of the previously derived condition
(L.4).

The pattern of integral curves is shown in Fig.l, where for definiteness we select a_ <<

0, @, > 0. The changed pattern of integral curves for other combinations of o on the left and
right of the critical point is readily obtainable.

Using (2.10) in the case of solution passing through the critical point it is possible to

calculate that the characteristics of Eq. (2,9) pass through
half of the critical point neighborhood of dimension § in a

L ¢ 4 time of order }/8, which was taken as the characteristic time
of solution change. This is also the time of linear inver-
| sion of perturbation defined by Eq.(2.9), if its amplitude
l is of order )8 and the characteristic length is of order 8.
// o T Form of the steady solution (2.10) and the relation be-
7 —

tween ¢ and w defined by formula (2.7) confirm the previous
r assumptions on the order of magnitude of win the coordinate

origin neighborhood. Obviously there exits a class of un-

steady solutions of the same order of magnitudes. Equality
Fig.l (2.5) corroborate the previous assumption that the quantities
wy (z,t) are of order 8, if wy, (t) is also of order &.

ﬂ___/

3. Let us compare Eq.(2.8) with the respective equation in /1/, cbtained for the solu-
tion in the small neighborhood of the critical point when the right-hand sides of Egs. (1.1)
are continuous.

G lew + (O] G —ocy + P + £ 1) (3.1)

co=clw+se, a=fi'+s, B=(f'4+ 3 fula,) et —fils
n=2
s=c+ D elay, fO)=30@) -+l D fulwu ()
e=? n=2

The notation in the present paper is used in expressions for ¢, a, B, f(f), and expres-
sions for s and ¢ () are the same as in formula (2.6).

The comparison of Egs. (2.8) and (3.1) shows that the cases of continuous and discontin-
uous function f!, can be considered as one, if the relation between w and ¢ is always defin-
ed by equality (2.7), and the equation for the determination of ¢ in the §-neighborhood of
the critical point is of the form

S Lot @l =7 +ac 4 Pa+ F () (3.2)
F(ity=sp(t) (v£0), F@O)=f@) (v=0)

When v 0, the term Bz is small in comparison with y and ac¢, so that it can be neg-
lected, and wheny =0, i.e. when function f1(f,! =0 is steady, it is possible to neglect in
conformity with condition (1.3)), in formula (2.7) the term rw® which is small in comparison
with terms proportional to w and gz.

Function ¢ (f) is the same in Eqgs.(2.8) and (3.1) but, as was shown in Sect.2 it can be
eliminated from Eq. (2.8), and as shown in /1/, functions ¢ () and f(f) can be eliminated
from Eq. (3.1) by the introduction the new variables ¢ (z,f) — ¢’ (f) and =z (f) — z° (¢}, where ¢° (f)
and 2° (f) are particular solutions of the system of differential equations

de’ldt = ac® + Pz° + f(B), da’ldt = ¢ + @ (1)

Thus by expressing the equation for ¢ in the form (3.2) and the relation between ¢ and
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w in the form (2.7), we obtain the equation that defines the solution in the neighborhood of
any critical point, and consider Eq. (3.2) under the conditions that

Fi) =9@® =0 (3.3

The solution of Eq. (3.2) can be cbtained by integrating along the characteristics of the
system of equations

e P L F ) =t () (3.4)

Equations (3.4) define unsteady and steady solutions. In the steady case system (3.4)
with condition (3.3) yields for c(x) a solution in the parametric form ¢ =c (), # = z (¢).

In the case of appearance of solutions nonunique with respect to x it is necessary to
introduce discontinuities, as in /2/, in order not to alter Scdz, which was also done in /1/.

It is possible to obtain from Eqg.(3.2) an equation for the determination of the small un-
steady perturbations ¢* (z, t) = ¢ (z, 1) — C (z} of the steady solution ( (z)

2 rIc@+ o+ o0 = (a— ) + PO — o 22 (3.5)

According to (2.7) the quantity ¢* is connected to the quantity w* = — W (z), where
W (2} = l;o' U; (2), by the relation

= clwot A @rW + w) wt (3.6)
where the second term is considerably smaller than the first,

The behavior of perturbations ¢* and w,* = wu {z, §) — W, (z), W, (2) == L;*U; (¢) in the small
neighborhood of point z =0 is defined by Eq. (3.5) and formulas

wy* = bao* QW (1) + w*) + wye () (3.7}

which follow from (2.5). Outside the neighborhood of point # = 0 it is possible to apply in
conventional manner the linearized system of Egs. (l.1), which we write for function p,* in the
form
dw * duw ¥
W@ Dory [+ 0@ U B | = @y (3.8)
w* = L (0, 0) uye*, w® = nws*, w* = g (2, 1) — Uy (2)

™ a1, au
X = {—f" —— “"3‘} T

6ul auj dz
(i, j,kbm=1,2,...,n)
Equations (3.8) are valid throughout the region of variation of =z, for w,*(u =2,..., n),

including the critical point neighborhood, but by virtue of the linearity of (3.8) the term
containing w?*? which is negligibly small in the critical point neighborhood and outside it
when v =0(f' =0), is omitted in (3.7). The term containing w*? must be added to the
solution for w,*, if the latter is to be made morxe accurate in the critical point neighborhood
when v % 0.

Equations (3.5) and (3.8) are necessary for solving the stability problem along the whole
segment of r (—L, <z < L,), where a steady solution U;(z) of the system of Egs.(l.l) exists
and is considered. Depending on the problem formulation, the critical point z =0 may co-
incide with right or left boundary of the z segment or be contained within it. For stabil-
ity investigation of solution U;{z) along the whole segment it is necessary alsc to define
the conditions of reflection of perturbations w;* (z, f) from the boundary =z = —L, or = L,,
or from both simultaneously. As shown in /3/, the number of boundary conditions must corres-
pond on the left and right to the number of positive and negative characteristic velocities of
system (1.1), respectively.

We introduce here also, as in /l1/, as the characteristic of behavior of small perturba-
tion in the neighborhood of point z == 0, ¢ = 0, the perturbation area

£

S={c*@tdz, *@H=ct,t) —C@ (3.9)

X3

Since the discontinuities introduced in the solution do not alter the perturbation area,
and the evolution of solution is defined by Egs. (3.4), the variation of perturbation area §
with time is determined by the divergence of the vector composed from the right-hand sides of
Egs. (3.4)
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%f-:s[{;(w(p(t))+%(v+oc+ﬁx+F(t))]=aS (3.10)
S () = S (0) exp at

Formula (3.10) was obtained on the assumption that integration of (3.9) is carried out
over the region outside which c* (z, t) = 0.

If c¢* (z,1)* 0 and also outside the integration interval (z;,;), it is necessary to add
to formula (3.10) the area increase ¢

as C(x)+c*(x, t)
S =o5+¢ g t)= cde (3.11)
C(x)

9=9(e21) =g, 0= [C (@) c* (@, 1) + 5 ¥ (20, 1) —
[ C (@) e* (@1, 1) + 5 ** (a1, ]

The behavior of perturbations of steady solutions passing through singular points, i.e.
for conditions v+ =0, a, =a_, B+ = p. was investigated in /1/ using Eqs. (3.4) and (3.3).

Here, we consider the behavior of perturbations of steady solutions passing through a
critical point on the assumption that function f' is discontinuous. In that case in Egs. (3.4)

v- <0,y >0,a_5 a4, while Pz, F (¢) and ¢ ({} are small in comparison with terms containing
y and c.

The pattern of integral curves for Y3 0,a.a, is shown in Fig.l. It suggests a de-
formed saddle. The direction of increase of t is indicated on curves by arrows.

In this case there are four solutions passing through the point =z =0, ¢ = 0: aob, lof, lob
and aof. Let us consider the development of perturbations in solution lof whose character-
istics on solution lof converge at point z = 0,c¢ =0. Perturbations of this solution assume
in conformity with (3.4) in time the shape of curvilinear triangle lying between curves fob
or aol, depending on the perturbation sign, and bounded by the discontinuity, respectively,
on the right or left (Fig.l).

In the absence of area increase g, the area of the curvilinear triangle lying to the
right of the critical point (¢* >0) varies as exp a.f, while that of the triangle on the left
of the critical point (c* << 0) varies as exp a-t. The evolution in time (# <<, << ;) shown in
Fig.l of the positive (¢* > 0) perturbation of solution Ilof moving in the negative direction
of axis x with «,>0. The forward front of that perturbation reaches the critical point in
time ¢ ~ VG.,, where 8, is the forward front coordinate at ¢= 0 and its rear front becomes
a weak shock wave whose propagation velocity is the arithmetic mean of characteristic veloc-
ities ahead and behind the discontinuity. Since a+ >0, the discontinuity begins to move at
some instant of time in the positive direction of the # axis, as shown in Fig.l. When a, <0
the discontinuity moves in the direction of point z =0,¢ =0, which leads to the damping of
perturbations.

The negative perturbation of solution Ilof moving along integral curve fo toward point

0 develops similarly, except that its forward front becomes a weak discontinuity, and in a
finite time it assumes the shape of curvilinear triangle on the left of the critical point;
from that instant its development is determined by the coefficient «_ . Depending on the sign
of g_ the weak perturbation moves in the negative direction of the =z axis (¢->0), which in-
dicates an increase of perturbations, or in the positive direction of that axisz (¢.<<0) to-
ward the critical point, which results in perturbation damping.

When the positive perturbation moves along the integral curve Ilo toward the critical
point, its forward front, in this case, becomes a weak discontinuity. This perturbation is
transformed in time in a curvilinear triangle on the right of the critical point, and its
further evolution is determined by the sign of a,.

A negative perturbation moving along the integral curve [ is transformed in time in a
curvilinear triangle on the left of the critical point, and its increase of damping is deter-
mined by the sign of a..

We shall now consider the development of a positive perturbation of solution aqob. Let at
the initial instant of time ¢ =0 the amplitude of that perturbation at point z =0,¢= 0 be
nonzero. Since any point of characteristic lo reaches point o in a finite time of order
]/6_0 and the amplitude of that perturbation is zero at the critical point. As the result, the
whole perturbation leaves the g§-neighborhood of the critical point in time
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The same occurs with the negative perturbation of solution aob.

It is possible to consider in the same way the development of positive and negative per-
trubations of solutions lpb and gof. Any initial perturbation of these solutions leaves the

§ -neighborhood of the critical point in the finite time ¢ of order ]/-3, which substantially

distinguishes solutions aob, lob and aof from solution lof, where the perturbations are always
retained at the critical point.

The above analysis enables us to present cases in which the critical point coincides with
the left or right end of the segment of Z.

4, The investigation of perturbation development in Sect.3 and in /1/ was based on the
assumption of no increase of perturbation area which may prove essential and affect the con-
clusions on the increase or decrease of perturbations in the critical point neighborhood. Let
us show this.,

Consider the interaction of perturbation c* (z,7) or w*(z, )= w(z,? — W (z) with perturba-
tions propagating at velocities ¢* that are nonzero at the critical point. This enables us
to estimate magnitude of area increase 4 in equality (3.11) which may represent a reflected
signal generated by perturbations propagating at characteristic velocities ¥,

The most interesting case is when these perturbations are themselves generated by per-
turbation w* (z,t). Because of this, we assume below that the order of magnitude of these per-
turbations is equal to their variations in the critical point neighborhood, with the character-
istic time of variation of these perturbations is the same as that of wu* (z,1?).

Let us determine the behavior of quantities w%,* more exactly than in equality (3.7). In
the latter the first term in the right-hand side contains a perturbation expressed in terms
of w*, and consequently, propagating at velocity ¢, only the second term can correspond to
perturbations propagating at other characteristic velocities. To refine formula (3.7) we
revert to the system of Egs. (l.1) and consider these equations for i from 2 to »n, expressing

u; in terms of w; in conformity with (2.1)
W) Oy

6,4+ o™ ( c"W) =M SFtat=1fr (4.1)

where the Kronecker delta &*=1 when p=k and §#*=0 when p=k, and functions a" depend on
wi and z and vanish at the critical point. We solve these equations for derivatives of w
with respect to z, and obtain

ow, 1 Owy ow
Gz = T h ot 5 +Auv ot +F + By at + D, 5 (4.2)

where 4, B,, D, are functions of wy and =z, which vanish at zero values of arguments, and
functions F, are linearly expressed in terms of .

We expand all these functions in the neighborhood of the critical point in series in wx
and 2. We determine dw/dt and u, using, respectively, formulas (2.6) and {2.5), and subst-
itute these in the right-hand sides of formula (4.2), neglecting the terms w, (#), which, as
shown below, on the assumptions made at the beginning of this Section, give corrections of a
higher order of smallness than the remaining terms in (2.5) and (2.6). Restricting the ob-
tained expression to a few first terms of expansions, we obtain

Ow ow
k= h w? —_—
- =% + by + ez -+ (gw + hywt 4 kya) = (4.3)
where 4y, by, €,, g+ 4, k, are constant coefficients of the expansion.
Using integration by parts, we obtain for w, the more accurate formula

("
x

w“=auz+%e"z’+(bu—ku)sW(z)d.t—}- (4.4)
0
2 a3
gu'wT "'hul’)s_'l'ku’""""u
x
v, = (bu—-ku)Sw‘ dz - p, ()
0

where (p, () is a derivative function dependent only on time.
This equality remains valid when function w has discontinuities, since integration over
a discontinuity can be carried out taking dJuidz as a generalized function. This statement is
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based on that the variation of quantities at a discontinuity coincides with an accuracy to
the third order of smallness with respect to the discontinuity amplitude corresponds with their
variation in some simple wave /2/ that approximates the discontinuity at the given instant of
time.

The terms neglected in eguality (4.3} result in an error of ordex §%, while in equality
(4.4) the exror is of order &, if y=0, when w» is of order & and dw/dr is of order unity.
When w and dwdrz if ¥+ 0 are, respectively, of order §and &, the error in equality (4.3)
due to neglected terms is of order &8, and in (4.4) it is of order &,

All terms in the right-~hand side of equality (4.4) except the latter are expressed in
terms of r and w at the running point, hence they relate to the stationary background or to
a perturbation moving at welocity =

The expression v, , which at the considered point is not explicitly dependent on »*, re—
presents a perturbation that corresponds to other characteristic velocities, basically to the
characteristic velocity &,

In conformity with the assumption made at the beginning of this point, we shall consider
that the order of magnitude of », is determined by the first integral term. Note that v,
provides a more exact definition of the term wy, (9 in equality {(2.5). We can verify the vali-
dity of neglecting terms w,,{f# in the derivation of Egs.{4.3) when y=0, as well as when y=+0,
by assuming that 7, and w, () are guantities of the same oxder,

Equality {4.4) shows that perturbation »*{z #} in the critical point neighborhood gen-
erates perturbations », that correspond to other characteristic velocities, and are equal in
the order of magnitude to the area & calculated by formula (3.9).

Assuming that the critical point lies at a finite distance from the segment boundaries,
where the conditions of waves reflection are specified with finite coefficients, and the in-
terconvertibility of waves inside the segment cannot materially affect their order of magni-
tude, it can be readily proved that the area increase ¢ is determined by 7,

This implies that the order of magnitude of 7 is o.¥, where o is a finite number, in-
dependent of &.
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